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We introduce a real-time method for the identification of time-varying interaction delays in coupled systems
with and without unknown structural parameters and analyze the convergence of the delay identification
process. The identification method can be applied to monitor the change in interaction delays, as well as to
decode the encoding of interaction delays. Several examples are presented to illustrate the reliability and
robustness of the suggested strategy.
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Interaction delays are a fundamental feature that has been
observed in various natural systems and may influence their
cooperative dynamics behaviors dramatically. The list of
typical examples includes living coupled oscillators �1�, neu-
rons �2–4�, laser systems �5�, and gene regulation networks
�6�, to name just a few. Interaction delays usually vary with
time due to some restrictions of signal “transmission” and
may even jump from one scale to another. Interaction delays
in analog �electronic� neural networks �7�, for instance, are
time-varying because of the finite switching speed of ampli-
fiers. To describe and understand dynamical behavior and
information processes of these coupled systems, we have to
take time-varying interaction delays into account and iden-
tify them real timely. In this paper, we suggest a real-time
method to estimate time-varying interaction delays of
coupled systems with and without unknown structural pa-
rameters. Several delay identification methods �8–14� have
been developed, but they are non-real-time and are appli-
cable only under the assumption that interaction delays are
constant �i.e., invariant with the time�.

To demonstrate the technique to be introduced in this pa-
per, we analyze coupled systems with a quite general form
given by

ẋ = f1�x� + h1�y�2
� − x� ,

ẏ = f2�y� + h2�x�1
� − y� , �1�

where x= �x1 ,x2 , . . . ,xn���Rn and y= �y1 ,y2 , . . . ,yn���Rn

are state vectors; f1= �f11, f12, . . . , f1n�� and f2
= �f21, f22, . . . , f2n�� describe the dynamics; h1
= �h11,h12, . . . ,h1n�� :Rn→Rn and h2
= �h21,h22, . . . ,h2n�� :Rn→Rn are coupling functions. We
contain time-varying delay �i

��t� for each coupling with
x1,���t�ªx1�t−���. We assume that s=s�x ,y� is the
�-dimensional experimental measurable output of the
coupled system. The main goal considered here is to estimate
delays �1

��t� and �2
��t� from the measurable output. In the

following, we always assume that the information about in-
teraction delays is �implicitly� contained in the output time
series �15�.

To estimate the values of the delays �i
��t�, we consider the

following equations as a “computational model”

u̇ = f1�u� + h1�v�2
− u� + w1�s,u,v� ,

v̇ = f2�v� + h2�u�1
− v� + w2�s,u,v� ,

�̇1 = g1�u,v,u�1
,v�2

� ,

�̇2 = g2�u,v,u�1
,v�2

� , �2�

where the stream of the measurable output s�x ,y� from sys-
tem �1� is used to dynamically change the model parameters
and the model state. Here �i�t� is an estimation of true delay
�i

��t�; and control signals wi and functions gi will be specified
below such that the model is applicable to estimate true de-
lay �i

��t� with acceptable accuracy.
Let e1�t�ªu�t�−x�t�, e2�t�ªv�t�−y�t�, �i�t�ª�i�t�

−�i
��t�, and ei= �ei1 ,ei2 , . . . ,ein��. Then the error system

reads

ė1k = h1k�v�2
− u� − h1i�y�2

� − x� + f1k�u� − f1k�x�

+ w1k, ∀ k = 1,2, . . . ,n ,

ė2k = h2k�u�1
− v� − h2k�x�1

� − y� + f2k�v� − f2k�y�

+ w21, ∀ k = 1,2, . . . ,n ,

�̇i = gi − �̇i
�, ∀ i = 1,2. �3�

After all delays are identified �i.e., �i�t�=�i
��t�, ∀i�, error

system �3� actually reads

ė1k = h1k�v�2
� − u� − h1i�y�2

� − x� + f1k�u� − f1k�x�

+ w1k, ∀ k = 1,2, . . . ,n ,

ė2k = h2k�u�1
� − v� − h2k�x�1

� − y� + f2k�v� − f2k�y�

+ w21, ∀ k = 1,2, . . . ,n . �4�

Therefore the necessary condition for ensuring a success-
ful delay identification is that one can find some proper con-
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trol signals wi such that the error system �4� is asymptoti-
cally stable. The issue is well studied in the literature and can
be attacked by using tools such as conditional Lyapunov ex-
ponents approach and Lyapunov’s direct method. For in-
stance, by following the work of Ref. �16�, we can easily
show that if w1=−k1�u−x� and w2=−k2�v−y� �with suffi-
cient high gains k1 and k2� are used, then the following
Lyapunov function

Vo =
1

2��
k

e1k
2 + �

k

e2k
2 + L21�

t−�2
�

t

�
k

e1k���2d�

+ L22�
t−�1

�

t

�
k

e2k���2d�� �5�

decreases monotonously along the trajectories of error sys-

tem �4�. This implies V̇o 	Eq.�4��0 and ei→0, ∀ i.
However, even when one can find some proper control

signals wi such that the error system �4� is asymptotically
stable, it is easy to see from Eq. �3� that the difference be-
tween �i�t� and their true values �i

��t� in general will destroy
the synchronization between system �1� and its model �Eq.
�2��. To preserve the synchronization, one has to choose the
functions gi carefully in order to compensate for �or elimi-
nate� the error caused by the difference between �i�t� and
their true values �i

��t�.
For this purpose, for the error system �3� we choose a

Lyapunov function

V�e1,e2,�1,�2� = Vo + �1
2/�2�1� + �2

2/�2�2� , �6�

where �i are positive and Vo is defined by Eq. �5�.
Differentiating V along the trajectories of system �3�, one

gets

V̇	Eq.�3� = V̇o	Eq.�4� + �̇1�1/�1 + �̇2�2/�2 + �
k

e1k�h1k�v�2
− u�

− h1k�v�2
� − u�� + �

k

e2k�h2k�u�1
− v� − h2k�u�1

� − v�� ,

�7�

where the last two terms of the right-hand side come from
the difference between systems �3� and �4�, which will be

eliminated by designing proper functions gi �due to �̇i=gi
− �̇i

� ∀ i�.
By considering h1k�v�2

� −u� as a function of �2
� and ex-

panding h1k�v�2
� −u� at �2

�=�2, one obtains the following first-
order approximation

h1k�v�2
� − u� 
 h1k�v�2

− u� −
�h1k�v�2

− u1�

��2
�2. �8�

Similarly one achieves

h2k�u�1
� − v� 
 h2k�u�1

− v� −
�h2k�u�1

− v�

��1
�1. �9�

Substituting Eqs. �8� and �9� into Eq. �7� yields

V̇	Eq.�3� = V̇o	Eq.�4� + �̇1�1/�1 + �̇2�2/�2

+ �2�
k

�h1k�v�2
− u�

��2
e1k + �1�

k

�h2k�u�1
− v�

��1
e2k.

�10�

To eliminate the last two terms of the right-hand side of
the above equation, one can design

g1 = − �1�
k

�h2k�u�1
− v�

��1
e2k,

g2 = − �2�
k

�h1k�v�2
− u�

��2
e1k, �11�

which indicates

V̇	Eq.�3� = V̇o	Eq.�4� − �̇1
��1/�1 − �̇2

��2/�2. �12�

If all delays �i
� are constant ��̇i

��t�=0∀ i�, then V̇ 	Eq.�3�

= V̇o 	Eq.�4� which implies from V̇o 	Eq.�4��0 �shown above�
that all state vectors x and y as well as delays �i

� can be
estimated correctly. When sufficiently large �i are used,

V̇o 	Eq.�4� dominates the right-hand side of Eq. �12� and hence
all time-varying delays �i

� can also be estimated with accept-
able accuracy.

Let us now move to show the reliability of the proposed
technique by making reference to a series of examples. As a
first example, we analyze the case of coupled identical
Rössler systems:

ẋ1 = − x2 − x3,

ẋ2 = x1 + ax2 + 0.1�y2,�2
� − x2� ,

ẋ3 = b + �x1 − c�x3,

ẏ1 = − y2 − y3,

ẏ2 = y1 + ay2 + 0.1�x2,�1
� − y2� ,

ẏ3 = b + �y1 − c�y3, �13�

where parameters are set to be a=b=0.2 and c=5.7. As a
model, we consider Eq. �2� with n=3; w1i=−10�ui−xi� and
w2i=−10�vi−yi� for i=1,2; w13=w23=0; g1=10u̇2,�1

�v2

−y2� and g2=10v̇2,�2
�u2−x2�.

Figure 1 shows that periodically time-varying interaction
delays can be identified with high accuracy �here we display
only the case that �1

��t� is sinusoidal and �2
��t��2�. Now we

consider a scenario in which each Rössler system corre-
sponds to a neuron and the change in interaction delays cor-
responds to a “neural encoding” processing. To understand
this information processing, we have to decode all encod-
ings. More precisely, we have to monitor the change in in-
teraction delays real timely. As a typical example Fig. 2 dis-
plays a “binary” delay-encoding processing and shows that
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all encoding information can be decoded with high accuracy
�here we display the case that only �1

��t� is used for encod-
ing�.

Noise exists in many natural coupled systems, which can
arise from either intrinsic sources or extrinsic sources which
are attributable to a noisy environment. It is, therefore, of
great value to analyze the influence of noise on the robust-
ness of delay identification. Figure 3 summarizes our nu-
merical results. It is easy to see from Inserts of Fig. 3�b� that
estimated delays fluctuate around their true values. However,
by using proper filter techniques �here we applied average
filters�, we can still estimate delays with high accuracy �cf.
insets of Fig. 3�c��.

It should be noticed that the model �used for Figs. 1–3�
applies only states x1, x2, y1, and y2. This implies that it is
still possible to estimate unknown interaction delays by ex-

ploiting information obtained from only partial state vari-
ables of coupled systems.

The above analysis focuses on delay estimation under the
reasonable conditions that the coupling functions and the lo-
cal dynamics of each element are known. If the coupling
functions and the local dynamics of each element are un-
known, one can follow the work of Ref. �17� and estimate
the coupling functions and the local dynamics of each ele-
ment with arbitrarily high accuracy by driving the coupled
system to distinct stationary states. One can also attack this
problem by using the strategy �as shown in Figs. 1–3� in
combination with the adaptive parameter estimation strategy
�18�. This will be demonstrated as follows.

It is reasonable to assume that

f ij�z� 
 �
k

p1ijk�ijk�z� ,

hij�z� 
 �
k

p2ijk�ijk�z� , �14�

where �ijk�x� and �ijk�x� are taken from kernel �or orthogo-
nal basic� functions set �e.g., polynomial functions set�. One
can achieve improved accuracy when higher order kernel
functions are contained in f ij and hij.

To identify interactions of system �1� under condition
�14�, we also have to estimate those unknown structural pa-
rameters p1ijk and p2ijk. For this purpose, the functions f ij and
hij in model �2� now read

f ij�z� 
 �
k

q1ijk�ijk�z� ,
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FIG. 1. Identification of sinusoidally time-varying delays. �a�
Root-mean-square error of state estimation Lse�t� �see inset for its
partial enlarged drawing� vs time. �b� Estimation value �2�t�. �c�
True �1

��t� and its estimation �1�t� vs time.
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FIG. 2. Decoding binary delay encoding. �a� Root-mean-square
error of state estimation Lse�t� �see inset for its partial enlarged
drawing� vs time. �b� Estimation value �2�t�. �c� True �1

��t� and its
estimation �1�t� vs time.
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FIG. 3. Delay identification in the presence of measurement
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mean-square error of state estimation Lse�t� �see inset for its partial
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hij�z� 
 �
k

q2ijk�ijk�z� , �15�

where parameters q1ijk and q2ijk are used to estimate their
true values p1ijk and p2ijk and are updated by q̇1ijk
=�1ijk�s ,u ,v� and q̇2ijk=�2ijk�s ,u ,v�. The functions �1ijk
and �2ijk can be determined by the well-developed adaptive
observer technique �18� and can simply be designed as
�1ijk=−�ijk�u��uj −xj�, �2ijk=−�ijk�u��uj −xj�, for i=1; �1ijk
=−�ijk�v��v j −yj�, �2ijk=−�ijk�v��v j −yj�, for i=2. Substitut-
ing Eq. �15� into Eq. �11�, one can easily design proper func-
tions g1 and g2.

To illustrate this delay identification method of coupled
systems with unknown structural parameters, we revisit the
coupled Rösser system �13� but assume that the structure of
the first Rösser system is unknown and can be approximated
by a polynomial series expansion �that is, �ijk�z� in Eq. �14�
are taken from polynomial functions set�. In our experiment,
we assume that the first Rösser system can be described by

ẋ1 = − x1 + p1x1 + p2x2 + p3x3,

ẋ2 = − x2 + p4x1 + p5x2 + p6x1x2,

ẋ3 = − x3 + p7 + p8x1 + p9x3 + p10x1x3 + p11x1x2,

which contains 11 unknown structural parameters pi and can
model many chaotic systems �including Lorenz and Rössler
systems�.

Simulation results plotted in Fig. 4 show that unknown
delays �1

� and �2
� can be identified with high accuracy �cf.

inserts of Fig. 4�b��; and 11 unknown structural parameters pi
can also be estimated with high accuracy �cf. insert of Fig.
4�c��.

It should be remarked that the complexity of the adaptive
delay estimation algorithm depends on: �i� the nonlinearity
�or complexity� of functions f ij and hij; �ii� the form of ker-
nel functions and the number of the unknown structural pa-
rameters contained in f ij or/and hij; �iii� the number of the
delays to be identified; and �iv� the dynamics of the delays to
be identified. It becomes very significant to reduce the num-
ber of the unknown structural parameters and improve the
convergence rate of parameter identification by choosing
proper kernel functions. For this reason, radial basis function
neural network �RBFN� �19–21� in practice may be used to
approximate f ij or/and hij �i.e., Gaussian functions as kernel
functions are used to approximate functions f ij or/and hij�
because it can approximate any regular function with arbi-
trary accuracy and its training is faster than that of a
multilayer perceptron. Even so, there in principle exists a
limitation if the number of unknown structural parameters in
the RBFN increases gradually; but, in the meanwhile, the
information concerning the states of the entire system cannot
be �further� added. Detailed analysis deserves a careful in-
vestigation and will be reported elsewhere.

Compared with previous non-real-time delay identifica-
tion methods �8–14�, the suggested technique has the follow-
ing advantages: �i� it can easily be extended to identify mul-
tiple time-varying delay parameters; �ii� it does not require
signal derivative estimator which is sensitive to noise; �iii� it

can be extended to high dimensional systems.
The suggested delay identification method can be ex-

tended to network systems given by

ẋi = fi�xi� + �
j=1

N

hij�y j,�ij
� − xi� , �16�

where i=1,2 , . . . ,N; xi= �xi1 ,xi2 , . . . ,xin���Rn is the state
vector of the ith node; fi= �f i1 , f i2 , . . . , f in�� describes the dy-
namics of the ith node; hij = �hij1 ,hij2 , . . . ,hijn�� :Rn→Rn are
coupling functions. We contain time-varying delay �ij

� �t� for
the coupling from the jth node to the ith node.

As a model, we consider the following equations:

żi = fi�zi� + �
j=1

N

hij�z j,�ij
− zi� + ui,

�̇ij = gij�zi,z j,xi� , �17�

where i=1,2 , . . . ,N; zi= �zi1 ,zi2 , . . . ,zin���Rn is the state
vector of the ith node; ui are control signals to be designed
such that zi→xi after all delay parameters �ij

� have been iden-
tified correctly �i.e., �ij =�ij

� �; and functions gij need to be
specified below.

Following the similar steps used for achieving Eq. �11�,
one can easily design proper functions gij as follows:
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FIG. 4. Delay identification of the coupled system with 11 un-
known parameters pi. �a� Root-mean-square error of state estima-
tion Lse�t� �see inset for its partial enlarged drawing� vs time. �b�
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gij = − �ij�
k

�hijk�z j,�ij
− zi�

��ij
eik, �18�

where positive constants �ij are used to improve the conver-
gence rate as well as the estimation accuracy in the case of
that time-varying delay identification is required �i.e., �ij

� are
time varying�.

In conclusion, we have introduced a real-time method to
estimate interaction delays of coupled systems with and
without unknown structural parameters. This method can be
applied to identify the change in interaction delays and there-
fore can monitor real-timely any fault �or information pro-
cessing� leading to some change in interaction delays. Fur-
thermore the proposed delay identification approach is

applicable to decode the delay-encoding �although we
showed here only binary encoding, our method can be used
to more general forms of encoding�. In the context of chaos
secure communication, the technique allows one to enhance
the security if the transmitting message is modulated by de-
lays, which can be recovered by the proposed delay identifi-
cation method. The suggested interaction delay identification
method can be generalized to dynamical networks and it in
combination with previous work �22� can be applied to esti-
mate topology of networks with time-varying interacting de-
lays.
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